Review of Text Classification in Deep Learning
نویسندگان
چکیده
منابع مشابه
Named Entity Recognition in Persian Text using Deep Learning
Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...
متن کاملDeep Multi-Task Learning with Shared Memory for Text Classification
Neural network based models have achieved impressive results on various specific tasks. However, in previous works, most models are learned separately based on single-task supervised objectives, which often suffer from insufficient training data. In this paper, we propose two deep architectures which can be trained jointly on multiple related tasks. More specifically, we augment neural model wi...
متن کاملLearning a Deep Hybrid Model for Semi-Supervised Text Classification
We present a novel fine-tuning algorithm in a deep hybrid architecture for semisupervised text classification. During each increment of the online learning process, the fine-tuning algorithm serves as a top-down mechanism for pseudo-jointly modifying model parameters following a bottom-up generative learning pass. The resulting model, trained under what we call the Bottom-Up-Top-Down learning a...
متن کاملEfficient Method Based on Combination of Deep Learning Models for Sentiment Analysis of Text
People's opinions about a specific concept are considered as one of the most important textual data that are available on the web. However, finding and monitoring web pages containing these comments and extracting valuable information from them is very difficult. In this regard, developing automatic sentiment analysis systems that can extract opinions and express their intellectual process has ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: OALib
سال: 2021
ISSN: 2333-9721,2333-9705
DOI: 10.4236/oalib.1107175